MLPE#

class mlquantify.likelihood.MLPE(learner=None)[source]#

Maximum Likelihood Prevalence Estimation (MLPE).

Returns training priors as prevalence estimates without adaptations.

Parameters:
learnerestimator, optional

Base classifier.

References

[2]

Esuli, A., Moreo, A., & Sebastiani, F. (2023). Learning to Quantify. Springer.

fit(X, y)[source]#

Fit the quantifier using the provided data and learner.

get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

predict(X)[source]#

Predict class prevalences for the given data.

save_quantifier(path: str | None = None) None[source]#

Save the quantifier instance to a file.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.