simplex_grid_sampling#
- mlquantify.utils.simplex_grid_sampling(n_dim: int, n_prev: int, n_iter: int, min_val: float, max_val: float) ndarray[source]#
Efficiently generates artificial prevalence vectors that sum to 1 and respect min_val ≤ p_i ≤ max_val for all i.
- Parameters:
- n_dimint
Number of dimensions (classes).
- n_prevint
Number of prevalence points per dimension (grid density).
- n_iterint
Number of repetitions.
- min_valfloat
Minimum allowed value for each prevalence component.
- max_valfloat
Maximum allowed value for each prevalence component.
- Returns:
- np.ndarray
Array of shape (n_samples, n_dim) with all valid prevalence vectors.