simplex_grid_sampling#

mlquantify.utils.simplex_grid_sampling(n_dim: int, n_prev: int, n_iter: int, min_val: float, max_val: float) ndarray[source]#

Efficiently generates artificial prevalence vectors that sum to 1 and respect min_val ≤ p_i ≤ max_val for all i.

Parameters:
n_dimint

Number of dimensions (classes).

n_prevint

Number of prevalence points per dimension (grid density).

n_iterint

Number of repetitions.

min_valfloat

Minimum allowed value for each prevalence component.

max_valfloat

Maximum allowed value for each prevalence component.

Returns:
np.ndarray

Array of shape (n_samples, n_dim) with all valid prevalence vectors.