User Guide# 1. Aggregative Quantification 1.1. Counters For Quantification 1.1.1. Classify and Count 1.1.2. Probabilistic Classify and Count 1.2. Adjust Counting 1.2.1. Threshold Adjustment 1.2.2. Matrix Adjustment 1.3. Likelihood-Based Quantification 1.3.1. Maximum Likelihood Prevalence Estimation (MLPE) 1.3.2. Expectation Maximization for Quantification (EMQ) 1.4. Mixture Models 1.4.1. DyS: Distribution y-Similarity Framework 1.4.2. HDy: Hellinger Distance y-Similarity 1.4.3. SMM: Sample Mean Matching 1.4.4. SORD: Sample Ordinal Distance 1.5. Nearest Neighbors 1.5.1. PWK: Pair-wise Weighted K-Nearest Neighbors 1.6. Kernel Density Estimation 1.6.1. KDEy: Kernel Density Estimation y-Similarity 2. Non Aggregative Quantification 2.1. Mixture Models for Non-Aggregative Quantification 2.1.1. HDx: Hellinger Distance x-Similarity 3. Meta Quantification 3.1. Ensemble for Quantification 3.2. Bootstrap in Quantification 3.3. QuaDapt: Drift-Resilient Score Adaptation 4. Model Selection and Evaluation 4.1. Protocols for Quantification 4.1.1. Artificial-Prevalence Protocol (APP) 4.1.2. Natural-Prevalence Protocol (NPP) 4.1.3. Uniform Prevalence Protocol (UPP) 4.1.4. Personalized Prevalence Protocol (PPP) 4.2. Tuning Hyperparameters 4.3. References 4.4. Evaluation Metrics 4.4.1. Single Label Quantification (SLQ) Metrics 4.4.2. Regression-Based Quantification (RQ) Metrics 4.4.3. Ordinal Quantification (OQ) Metrics 5. Confidence Intervals 5.1. General Concept 5.2. Percentile-Based Confidence Intervals 5.3. Confidence Ellipse in Simplex 5.4. Confidence Ellipse in CLR Space 5.4.1. References 6. Building a Quantifier 6.1. General Quantifiers 6.2. Aggregative Quantifiers 6.3. Aggregation Types 6.4. Binary Quantifiers 6.5. Validation Utilities 6.6. Parameter Constraints