Skip to main content
Ctrl+K

mlquantify 0.1.1 documentation

  • Install
  • User Guide
  • API
  • GitHub
  • Install
  • User Guide
  • API
  • GitHub

Section Navigation

  • 1. Methods Taxonomy
    • 1.1. Aggregative Quantification
    • 1.2. Non Aggregative Quantification
    • 1.3. Meta Quantification
  • 2. Label Scheme
    • 2.1. Binary problems
    • 2.2. Multiclass Problems
  • 3. Building a Quantifier
    • 3.1. Building a Quantifier
    • 3.2. Building an Aggregative Quantifier
    • 3.3. Building a Non-Aggregative Quantifier
  • 4. Non Parameters Scenarios
  • 5. Model Selection and Evaluation
    • 5.1. Tunning the hyper-parameter of a quantifier
    • 5.2. Metrics and scoring: quantifing the performance of a quantifier
  • 6. Experiment Management
    • 6.1. Protocol
    • 6.2. Artificial Prevalence protocol with general usage
    • 6.3. Artificial Prevalence protocol with selected usage
    • 6.4. Building a Protocol
  • User Guide
  • 5. Model Selection and Evaluation

5. Model Selection and Evaluation#

  • 5.1. Tunning the hyper-parameter of a quantifier
  • 5.2. Metrics and scoring: quantifing the performance of a quantifier

previous

4. Non Parameters Scenarios

next

5.1. Tunning the hyper-parameter of a quantifier

This Page

  • Show Source