BinaryQuantifier#
- class mlquantify.multiclass.BinaryQuantifier[source]#
Meta-quantifier enabling One-vs-Rest and One-vs-One strategies.
This class extends a base quantifier to handle multiclass problems by decomposing them into binary subproblems. It automatically delegates fitting, prediction, and aggregation operations to the appropriate binary quantifiers.
- Attributes:
- qtfs_dict
Dictionary mapping class labels or label pairs to fitted binary quantifiers.
- strategy{‘ovr’, ‘ovo’}
Defines how multiclass quantification is decomposed.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.