CC#
- class mlquantify.adjust_counting.CC(learner=None, threshold=0.5)[source]#
Classify and Count (CC) quantifier.
Implements the Classify and Count method for quantification, describe as a baseline approach in the literature [1][2].
- Parameters:
- learnerestimator, optional
A supervised learning estimator with
fitandpredictmethods. If None, it is expected that the aggregate method is used directly.- thresholdfloat, default=0.5
Decision threshold for converting predicted probabilities into class labels. Must be in the interval [0.0, 1.0].
- Attributes:
- learnerestimator
Underlying classification model.
Notes
The Classify and Count approach performs quantification by classifying each instance using the classifier’s predicted labels at a given threshold, then counting the prevalence of each class.
This method can be biased when class distributions differ between training and test sets, motivating further adjustment methods.
References
[1]Forman, G. (2005). “Counting Positives Accurately Despite Inaccurate Classification”, ECML, pp. 564-575.
[2]Forman, G. (2008). “Quantifying Counts and Costs via Classification”, Data Mining and Knowledge Discovery, 17(2), 164-206.
Examples
>>> from mlquantify.adjust_counting import CC >>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> X = np.random.randn(100, 5) >>> y = np.random.randint(0, 2, 100) >>> q = CC(learner=LogisticRegression()) >>> q.fit(X, y) >>> q.predict(X) {0: 0.47, 1: 0.53} >>> q2 = CC() >>> predictions = np.random.rand(200) >>> q2.aggregate(predictions) {0: 0.51, 1: 0.49}
- aggregate(predictions, train_y_values=None)[source]#
Aggregate predictions into class prevalence estimates.
- fit(X, y, learner_fitted=False, *args, **kwargs)[source]#
Fit the quantifier using the provided data and learner.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_fit_request(*, learner_fitted: bool | None | str = '$UNCHANGED$') CC[source]#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- learner_fittedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
learner_fittedparameter infit.
- Returns:
- selfobject
The updated object.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.