GPAC#
- class mlquantify.adjust_counting.GPAC(learner=None)[source]#
Probabilistic Generalized Adjusted Count (GPAC) method.
This class implements the probabilistic extension of the Generalized Adjusted Count method as presented in Firat (2016) [1]. The GPAC method normalizes the confusion matrix by the estimated prevalences from posterior probabilities, enabling a probabilistic correction of class prevalences.
The normalization divides each column of the confusion matrix by the estimated prevalence of the corresponding class. If a class has zero estimated prevalence, the diagonal element for that class is set to 1 to maintain matrix validity.
GPAC extends the GAC approach by using soft probabilistic predictions (posterior probabilities) rather than crisp class labels, potentially improving quantification accuracy when posterior probabilities are well calibrated.
- Parameters:
- learnerestimator, optional
Base classifier with
fitandpredict_probamethods.
- Attributes:
- CMndarray of shape (n_classes, n_classes)
Normalized confusion matrix used for adjustment.
- classes_ndarray
Array of class labels observed during training.
References
[1]Firat, A. (2016). “Unified Framework for Quantification”, Proceedings of AAAI Conference on Artificial Intelligence, pp. 1-8.
Examples
>>> from sklearn.linear_model import LogisticRegression >>> from mlquantify.adjust_counting import GPAC >>> import numpy as np >>> gpac = GPAC(learner=LogisticRegression()) >>> X = np.random.randn(50, 4) >>> y = np.random.randint(0, 2, 50) >>> gpac.fit(X, y) >>> gpac.predict(X) {0: 0.5, 1: 0.5}
- aggregate(predictions, train_predictions, y_train_values)[source]#
Aggregate predictions and apply matrix- or rate-based bias correction.
- fit(X, y, learner_fitted=False, cv=10, stratified=True, random_state=None, shuffle=True)[source]#
Fit the quantifier using the provided data and learner.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_fit_request(*, cv: bool | None | str = '$UNCHANGED$', learner_fitted: bool | None | str = '$UNCHANGED$', random_state: bool | None | str = '$UNCHANGED$', shuffle: bool | None | str = '$UNCHANGED$', stratified: bool | None | str = '$UNCHANGED$') GPAC[source]#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- cvstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
cvparameter infit.- learner_fittedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
learner_fittedparameter infit.- random_statestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
random_stateparameter infit.- shufflestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
shuffleparameter infit.- stratifiedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
stratifiedparameter infit.
- Returns:
- selfobject
The updated object.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.