CDE#
- class mlquantify.likelihood.CDE(learner=None, tol=0.0001, max_iter=100, init_cfp=1.0)[source]#
CDE-Iterate for binary classification prevalence estimation.
Threshold \(\tau\) from false positive and false negative costs: .. math:
\tau = \frac{c_{FP}}{c_{FP} + c_{FN}}
Hard classification by thresholding posterior probability \(p(+|x)\) at \(\tau\): .. math:
\hat{y}(x) = \mathbf{1}_{p(+|x) > \tau}
Prevalence estimation via classify-and-count: .. math:
\hat{p}_U(+) = \frac{1}{N} \sum_{n=1}^N \hat{y}(x_n)
False positive cost update: .. math:
c_{FP}^{new} = \frac{p_L(+)}{p_L(-)} \times \frac{\hat{p}_U(-)}{\hat{p}_U(+)} \times c_{FN}
- Parameters:
- learnerestimator, optional
Wrapped classifier (unused).
- tolfloat, default=1e-4
Convergence tolerance.
- max_iterint, default=100
Max iterations.
- init_cfpfloat, default=1.0
Initial false positive cost.
References
[1]Esuli, A., Moreo, A., & Sebastiani, F. (2023). Learning to Quantify. Springer.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.