T50#
- class mlquantify.adjust_counting.T50(learner=None, threshold=0.5, strategy='ovr')[source]#
T50 — selects threshold where \(\text{TPR} = 0.5\).
This method chooses the classification threshold such that the true positive rate (TPR) equals 0.5, avoiding regions with unreliable estimates at extreme thresholds.
- Parameters:
- learnerestimator, optional
A supervised learning model with
fitandpredict_probamethods.- thresholdfloat, default=0.5
Classification threshold in [0, 1] for applying in the
CCoutput.
References
[1]Forman, G. (2005). “Counting Positives Accurately Despite Inaccurate Classification”, ECML, pp. 564-575.
- get_best_threshold(thresholds, tprs, fprs)[source]#
Select the best threshold according to the specific method.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_fit_request(*, cv: bool | None | str = '$UNCHANGED$', learner_fitted: bool | None | str = '$UNCHANGED$', random_state: bool | None | str = '$UNCHANGED$', shuffle: bool | None | str = '$UNCHANGED$', stratified: bool | None | str = '$UNCHANGED$') T50[source]#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- cvstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
cvparameter infit.- learner_fittedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
learner_fittedparameter infit.- random_statestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
random_stateparameter infit.- shufflestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
shuffleparameter infit.- stratifiedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
stratifiedparameter infit.
- Returns:
- selfobject
The updated object.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.