BaseQuantifier#
- class mlquantify.base.BaseQuantifier[source]#
Base class for all quantifiers in mlquantify.
Inhering from this class provides default implementations for
setting and getting parameters used by
GridSearchQand friends;saving/loading quantifier instances;
parameter validation.
Read more in User Guide.
Notes
All quantifiers should specify all the parameters that can be set at the class level in their
__init__as explicit keyword arguments. (No*argsor**kwargsallowed.)Examples
>>> from mlquantify.base import BaseQuantifier >>> import numpy as np >>> class MyQuantifier(BaseQuantifier): ... def __init__(self, param1=42, param2='default'): ... self.param1 = param1 ... self.param2 = param2 ... def fit(self, X, y): ... self.classes_ = np.unique(y) ... return self ... def predict(self, X): ... _, counts = np.unique(self.classes_, return_counts=True) ... prevalence = counts / counts.sum() ... return prevalence >>> quantifier = MyQuantifier(param1=10, param2='custom') >>> quantifier.get_params() {'param1': 10, 'param2': 'custom'} >>> X = np.random.rand(100, 10) >>> y = np.random.randint(0, 2, size=100) >>> quantifier.fit(X, y).predict(X) [0.5 0.5]
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.