MS2#

class mlquantify.adjust_counting.MS2(learner=None, threshold=0.5, strategy='ovr')[source]#

MS2 — Median Sweep variant constraining \(|\text{TPR} - \text{FPR}| > 0.25\).

This variant of Median Sweep excludes thresholds where the absolute difference between true positive rate (TPR) and false positive rate (FPR) is below 0.25, improving stability by avoiding ambiguous threshold regions.

Parameters:
learnerestimator, optional

A supervised learning model with fit and predict_proba methods.

thresholdfloat, default=0.5

Classification threshold in [0, 1] for applying in the CC output.

Warning

  • Warns if all TPR or FPR values are zero.

  • Warns if no thresholds satisfy the constraint.

References

[1]

Forman, G. (2008). “Quantifying Counts and Costs via Classification”, Data Mining and Knowledge Discovery, 17(2), 164-206.

aggregate(*args)[source]#

Aggregate binary predictions to obtain multiclass prevalence estimates.

fit(X, y)[source]#

Fit the quantifier under a binary decomposition strategy.

get_best_threshold(thresholds, tprs, fprs)[source]#

Select the best threshold according to the specific method.

get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

predict(X)[source]#

Predict class prevalences using the trained binary quantifiers.

save_quantifier(path: str | None = None) None[source]#

Save the quantifier instance to a file.

set_fit_request(*, cv: bool | None | str = '$UNCHANGED$', learner_fitted: bool | None | str = '$UNCHANGED$', random_state: bool | None | str = '$UNCHANGED$', shuffle: bool | None | str = '$UNCHANGED$', stratified: bool | None | str = '$UNCHANGED$') MS2[source]#

Configure whether metadata should be requested to be passed to the fit method.

Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see sklearn.set_config). Please check the User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Parameters:
cvstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for cv parameter in fit.

learner_fittedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for learner_fitted parameter in fit.

random_statestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for random_state parameter in fit.

shufflestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for shuffle parameter in fit.

stratifiedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for stratified parameter in fit.

Returns:
selfobject

The updated object.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.