MS2#
- class mlquantify.adjust_counting.MS2(learner=None, threshold=0.5, strategy='ovr')[source]#
MS2 — Median Sweep variant constraining \(|\text{TPR} - \text{FPR}| > 0.25\).
This variant of Median Sweep excludes thresholds where the absolute difference between true positive rate (TPR) and false positive rate (FPR) is below 0.25, improving stability by avoiding ambiguous threshold regions.
- Parameters:
- learnerestimator, optional
A supervised learning model with
fitandpredict_probamethods.- thresholdfloat, default=0.5
Classification threshold in [0, 1] for applying in the
CCoutput.
Warning
Warns if all TPR or FPR values are zero.
Warns if no thresholds satisfy the constraint.
References
[1]Forman, G. (2008). “Quantifying Counts and Costs via Classification”, Data Mining and Knowledge Discovery, 17(2), 164-206.
- get_best_threshold(thresholds, tprs, fprs)[source]#
Select the best threshold according to the specific method.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_fit_request(*, cv: bool | None | str = '$UNCHANGED$', learner_fitted: bool | None | str = '$UNCHANGED$', random_state: bool | None | str = '$UNCHANGED$', shuffle: bool | None | str = '$UNCHANGED$', stratified: bool | None | str = '$UNCHANGED$') MS2[source]#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- cvstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
cvparameter infit.- learner_fittedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
learner_fittedparameter infit.- random_statestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
random_stateparameter infit.- shufflestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
shuffleparameter infit.- stratifiedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
stratifiedparameter infit.
- Returns:
- selfobject
The updated object.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.