NPP#
- class mlquantify.model_selection.NPP(batch_size, n_samples=1, repeats=1, random_state=None)[source]#
Natural Prevalence Protocol (NPP) that samples data without imposing prevalence constraints.
This protocol simply samples batches randomly with replacement, ignoring prevalence distributions.
- Parameters:
- batch_sizeint or list of int
Size(s) of the evaluation batches.
- n_samplesint, optional (default=1)
Number of distinct batch samples per batch size.
- repeatsint, optional (default=1)
Number of repetitions for each batch sample.
- random_stateint, optional
Random seed for reproducibility.
Examples
>>> protocol = NPP(batch_size=100, random_state=42) >>> for idx in protocol.split(X, y): ... # Train and evaluate ... pass
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.