evaluate_thresholds#

mlquantify.adjust_counting.evaluate_thresholds(y, probabilities: ndarray) tuple[source]#

Evaluate a range of classification thresholds to compute the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for a binary quantification task.

Parameters:
ynp.ndarray

The true labels.

probabilitiesnp.ndarray

The predicted probabilities (scores) for the positive class.

classesnp.ndarray

The unique classes in the dataset.

Returns:
tuple

A tuple of (thresholds, tprs, fprs), where: - thresholds is a numpy array of evaluated thresholds, - tprs is a numpy array of corresponding True Positive Rates, - fprs is a numpy array of corresponding False Positive Rates.