APP#
- class mlquantify.model_selection.APP(batch_size, n_prevalences, repeats=1, random_state=None, min_prev=0.0, max_prev=1.0)[source]#
Artificial Prevalence Protocol (APP) for exhaustive prevalent batch evaluation.
Generates batches with artificially imposed prevalences across all possible combinations within specified bounds. This allows comprehensive evaluation over a range of prevalence scenarios.
- Parameters:
- batch_sizeint or list of int
Size(s) of the evaluation batches.
- n_prevalencesint
Number of artificial prevalence levels to sample per class dimension.
- repeatsint, optional (default=1)
Number of repetitions for each prevalence sampling.
- random_stateint, optional
Random seed for reproducibility.
- min_prevfloat, optional (default=0.0)
Minimum possible prevalence for any class.
- max_prevfloat, optional (default=1.0)
Maximum possible prevalence for any class.
Notes
For multiclass problems, this protocol may have high computational complexity due to combinatorial explosion in prevalence combinations.
Examples
>>> protocol = APP(batch_size=[100, 200], n_prevalences=5, repeats=3, random_state=42) >>> for idx in protocol.split(X, y): ... # Train and evaluate ... pass
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.