RNOD#
- mlquantify.metrics.RNOD(prev_pred, prev_real, distances=None)[source]#
Compute the Root Normalised Order-aware Divergence (RNOD) for ordinal quantification evaluation.
- Parameters:
- prev_realarray-like or dict
True prevalence values for each ordered class.
- prev_predarray-like or dict
Predicted prevalence values for each ordered class.
- distances2D array-like of shape (n_classes, n_classes), optional
Distance matrix between classes (d(y_i, y_j)). If None, assumes d(y_i, y_j) = |i - j|.
- Returns:
- rnodfloat
Root Normalised Order-aware Divergence between predicted and true prevalences.