.. _installation: ==================== Installing mlquantify ==================== The `mlquantify` library can be easily installed via `pip`. Below are detailed installation instructions, including its dependencies and differences in using a virtual environment across operating systems. Dependencies ------------ Before installing `mlquantify`, ensure you have the following dependencies: - `scikit-learn` - `pandas` - `numpy` - `joblib` - `tqdm` - `matplotlib` - `xlrd` `pip` will automatically install these dependencies if they are not already present in your environment. Installation ------------ To install the library, use the following command: .. code-block:: bash pip install mlquantify Using Virtual Environments ---------------------------- It is recommended to use virtual environments to manage project dependencies. Below are the instructions for different operating systems. ### Linux/macOS 1. Create a virtual environment: .. code-block:: bash python3 -m venv mlquantify_env 2. Activate the virtual environment: .. code-block:: bash source mlquantify_env/bin/activate 3. Install the library: .. code-block:: bash pip install mlquantify 4. To deactivate the virtual environment: .. code-block:: bash deactivate ### Windows 1. Create a virtual environment: .. code-block:: powershell python -m venv mlquantify_env 2. Activate the virtual environment: .. code-block:: powershell mlquantify_env\Scripts\activate 3. Install the library: .. code-block:: powershell pip install mlquantify 4. To deactivate the virtual environment: .. code-block:: powershell deactivate Now, `mlquantify` is ready to be used in your project!